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Abstract. The open problem posed by Paul Erd®s asking for the small-
est number of edges in a 4-dimensional graph is solved by showing that a
4-dimensional graph must have at least 9 edges. Furthermore, there is only
one 4-dimensional graph with 9 edges, namely K3,3.

1. INTRODUCTION

In [1, p88] and [2] the dimension of a graph is de�ned as follows.

De�nition 1. The dimension of a graph G, denoted dim(G), is the minimum n
such that G has a unit-distance representation in Rn, i.e., every edge is of length
1. The vertices of G are mapped to distinct points of Rn, but edges may cross.

For example, a path has dimension 1, a cyclic graph has dimension 2, and K4 has
dimension 3 (because it can be embedded in 3-space as a regular tetrahedron with
edge length 1). A somewhat less obvious case is shown in Figure 1 where graph
G151 is shown as it appears in [3, p10] and with a unit-distance representation (see
Figure 9 for a correspondence between the vertices of the two representations).

Figure 1. Graph G151 and a unit-distance representation in the plane.

In [1, p93] a problem posed by Paul Erd®s in 1991 is stated as follows.

Problem 2. What is the smallest number of edges in a graphG such that dim(G) =
4?

The answer to this question is 9, as is shown in the remainder of this article. It
is also shown that there is only one 4-dimensional graph with 9 edges, namely K3,3.

2. basic facts about graph dimension

Basic results on the dimensions of graphs are given in [1, pp88-93] and [2]. Here
are results used in this article.
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Proposition 3. Basic results on the dimension of a graph are as follows:

dim(Kn) = n− 1
dim(Kn − e) = n− 2
dim(K1,1) = dim(K1,2) = 1, dim(K1,m) = 2 for m = 3
dim(K2,2) = 2, dim(K2,m) = 3 for m = 3
dim(Km,n) = 4 for m = n = 3
dim(Cn) = 2 for Cn a cyclic graph of order n = 3
dim(tree) 5 2
if H is a subgraph of G then dim(H) 5 dim(G)

Since K2,3 plays an important role in some arguments below, and to give a �avor
of the kind of proofs found in [1] and [2], we give a proof that dim(K2,3) = 3.

Proposition 4. If two vertices u and v of a graph G have at least three neighbors

in common, then dim(G) = 3.

Proof. Consider two circles in the plane of radius 1 with u and v as centers. Then
the three neighbors in common must all lie on both circles since each of the neighbors
is at distance 1 from both u and v. But two circles can intersect in at most 2 points.
So a unit-distance representation in the plane is impossible. Thus dim(G) = 3. �

Corollary 5. dim(K2,3) = 3.

Proof. Let u and v be the two vertices of degree 3. Then u and v have 3 neighbors
in common, so by the proposition, dim(G) = 3. But, K2,3 can be embedded in 3-
space so that all edges are unit length as shown in Figure 2. Place u on the positive
z-axis at (0, 0, d), where d =

√
2/2, and place v on the negative z-axis at (0, 0,−d).

Place the three vertices of degree two in the xy-plane at (d, 0, 0), (−d, 0, 0), and
(0, d, 0). The distances from the latter three points to the points on the z-axis are

all
√
d2 + d2 = 1. �

u

v

Figure 2. K2,3 embedded in 3-space with all edges unit length.
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Many other embeddings are possible. For example, if u and v are on the z-axis
at distance h from the origin, 0 < h < 1, then the other vertices can be anywhere
on a circle in the xy-plane with radius

√
1− h2 and center at the origin.

Note that K2,3 is a counterexample to the conjecture that planar graphs have
dimension 2. K2,3 is planar (see Figure 3), but it has dimension 3. The existence
of a planar representation of a graph does not imply that a planar unit-distance
representation exists.

3. 3-routes

We introduce a type of graph which will play a role in restricting the set of
graphs we need to examine to prove the main result.

De�nition 6. A 3-route is a graph with four or more vertices, two of which, u, v,
u 6= v, are distinguished. There are exactly three paths from u to v, disjoint except
for the endpoints u and v. A 3-route with path lengths i, j, k is denoted Ri,j,k.

Example 7. The minimal 3-route is R2,1,2 as shown in Figure 3. The minimal
3-route with all paths containing more than one edge is R2,2,2. Note that R2,2,2

∼=
K2,3.

v

u

v

u

Figure 3. Minimal 3-routes R2,1,2 and R2,2,2
∼= K2,3.

We would like to determine the dimension of a 3-route Ri,j,k. Without loss of
generality we can assume that j 5 i 5 k, i.e., the middle path is the shortest and
the right path is the longest. Note that there can be at most one path of length 1
(otherwise there would be multiple edges from u to v), so both the left and right
paths must have lengths greater than 1. Figure 4 shows the �rst six left paths,
Figure 5 shows the �rst �ve middle paths, and �gure 6 shows the �rst six right
paths.

Figure 4. Embeddings of left paths.
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Figure 5. Embeddings of middle paths.

Figure 6. Embeddings of right paths.

To create a unit-distance representation in the plane of any Ri,j,k with j 5 i 5 k,
simply create a left path of length i by following the pattern in Figure 4, create
a middle path of length j by following the pattern in Figure 5, and create a right
path of length k by following the pattern in Figure 6. Figure 7 shows examples of
such embeddings.

R2,1,2 R2,1,3 R2,1,4

R3,1,3 R2,2,3 R2,2,4

R3,3,4 R4,4,4

Figure 7. Examples of unit-distance representations of 3-routes.
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We must make sure that this construction does not result in two coincident
vertices. Clearly a left path and a right path never con�ict, nor do a left path and
a middle path. The only possible con�ict might occur between a middle path and
a right path, and, indeed, this happens when both are of length 2. Note that since
the middle path is the shortest and the right path is the longest, this means the
left path is also of length 2, so the graph is R2,2,2 which is isomorphic to K2,3, a
3-dimensional graph. Thus we have established the following:

Proposition 8. Every 3-route is 2-dimensional except R2,2,2 which is 3-dimensional.

It is well-known that if an edge is added to a tree, the resulting graph contains
exactly one cycle. What if two edges are added to a tree? The �rst edge creates
a cycle. The second edge also creates a cycle, which is related to the �rst cycle in
one of two ways: Either the two cycles have no edge in common, or the two cycles
share one or more edges. In the former case, the graph is clearly 2-dimensional. In
the latter case, the two cycles form a 3-route, so the graph is 2-dimensional unless
it is R2,2,2. In all cases, a tree with two edges added to it has dimension 5 3.

4. finding all candidate graphs

Only biconnected graphs need be considered, as is shown by the following propo-
sition.

Proposition 9. Let G be a connected graph of dimension 4 having a minimal

number of edges. Then G is biconnected.

Proof. Assume G is not biconnected and let v be a cut vertex. Let B be any
block in the decomposition of G determined by v. Since B has fewer edges than G
and G is a 4-dimensional graph with a minimum number of edges, it must be that
dim(B) 5 3. Thus all blocks can be represented in the plane or in 3-space with unit
length edges, and then joined at v in such a way that all vertices of G are distinct
points. Thus dim(G) 5 3, a contradiction showing that G is biconnected. �

We want to �nd one or more graphs of dimension 4 with the least number of
edges. Since dim (K5) = 4 and dim (K5 − e) = 3, it is clear that we need not
consider graphs with 5 or fewer vertices because other than K5 each of them is
isomorphic to a subgraph of K5 − e and hence has dimension 5 3.

Turning to graphs of order 6, we immediately have a better candidate than K5,
namely, K3,3, which has dimension 4 and 9 edges. Therefore, we need not consider
any graphs with more than 9 edges. A graph with 9 edges can have at most 10
vertices, in which case it is a tree. But a tree has dimension 5 2, so we need only
consider graphs of orders 6, 7, 8, and 9.

In Table 1 we see that we need only consider graphs with 7 vertices and 9 edges
and graphs with 6 vertices and 8 or 9 edges. To justify this observation: If a graph
has n edges, then the maximum number of vertices it can have is n+1. In this case,
the graph is a tree, so its dimension is 5 2. If one more edge is added to a tree,
then the resulting graph has exactly one cycle. Clearly this graph has dimension
2. If yet another edge is added, the graph has at least two cycles. If the two cycles
have no edge in common, then the dimension is 2. If the two cycles do have at least
one edge in common, then the graph is a 3-route, and, hence, by Proposition 8 the
dimension is 5 3. Thus, all combinations of orders and sizes shown in Table 1 are
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ruled out except for graphs with 7 vertices and 9 edges and graphs with 6 vertices
and 8 or 9 edges.

Consulting [3, pp34-35, 40-42] we see the number of non-isomorphic, biconnected
(vertex-connectivity= 2) graphs in each of the three categories we need to consider:
A total of 14 + 9 + 20 = 43 graphs.

Table 1. Orders and sizes of candidate graphs.

no. edges
no. verts

9 8 7 6 5

6 14 9 3-route cycle tree
7 20 3-route cycle tree
8 3-route cycle tree
9 cycle tree
10 tree

5. THE SOLUTION

Of the 43 candidate graphs, 27 are 2-dimensional and 15 are 3-dimensional. For
most of the 2-dimensional graphs shown in Figure 8, it is obvious that they are
isomorphic to the diagrams found in [3, pp10-11, 18]. There are, however, three
2-dimensional graphs for which the unit-distance representation is not immediately
obvious: G151, G573, and G580. Figure 9 shows these graphs, each with a pair of
diagrams. The graph names have su�xes a and b, where a is a diagram from [3],
and b is an representation from Figure 8. The vertices are labeled with letters so
that it is easy to determine that the graph in an a diagram is isomorphic to the
graph in the corresponding b diagram.

The diagrams for G151 and G580 make the representations in the plane rather
evident. For graph G573, however, it is not so clear that in diagram G573b all
edges are of unit length. This can be veri�ed from the coordinates of the vertices
of G573b shown in Table 2

Table 2. Coordinates of the vertices of G573b.

x y

A
√
37/8 3

√
3/8

B
√
37/8− 9

√
301/344 + 1/2 −

√
903/86

C 1 +
√
37/8 −3

√
3/8

D 1 0
E 0 0

F
√
37/8 −3

√
3/8

G 1 +
√
37/8 3

√
3/8
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G145 G147 G148 G151 G152

G153 G163 G164 G167 G174

G555 G556 G559 G560 G561

G563 G564 G566 G571 G572

G573 G574 G575 G577 G579

G580 G581

Figure 8. Unit-distance representations of 2-dimensional graphs
in the plane.
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G151a

A

B C

D

E

F

G151b

A

B

C

D

E

F

G573a

A

B

C

DE

FG

G573b

A

B

C

DE

F

G

G580a

A

B

C

D

E
F

G

G580b

A B

C

DE
F

G

Figure 9. 2-dimensional unit-distance representations compared
to An Atlas of Graphs.

The 15 3-dimensional graphs are shown in Figures 11 and 12. For all these
graphs except two, K2,3 is a subgraph, which guarantees that the dimension is at
least 3. In all cases, the K2,3 subgraph is embedded with A on the positive z-axis,
B on the negative z-axis, and C, D, and E on the x- and y-axes. In most cases,
A and B are at distance

√
3/2 from the origin, and C, D, and E are at distance

1/2 from the origin. (For G161 and G162, A and B are at distance 1/2 from the

origin, and C, D, and E are at distance
√
3/2).

Graph G169 does not have K2,3 as a subgraph. However, it does have K4 as a
subgraph, so its dimension must be at least dim(K4) = 3. The diagram for G169
shows the K4 subgraph as a regular tetrahedron.

Graph G171 does not haveK2,3 norK4 as a subgraph. Nevertheless dim(G171) =
3. To see this, assume that dim(G171) = 2, so we have a unit-distance representa-
tion in the plane. Since G171 contains the 3-cycles AEF , EDF , and DCF , these
must appear in the embedding as equilateral triangles with unit edge lengths. There
is only one way to embed this, as shown in Figure 10.

A F C

E D

Figure 10. Three adjacent 3-cycles in G171.
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G146a

A B

C

D

E

F

G146b

A

B

C D
EF

G149a

A B

C

D

E

F

G149b

A

B

C D
E

F
G154a

A

B C

D

E

F

G154b

A

B

C D
EF

G161a

A B

C

D

E

F

G161b

A

BC D

EF

G162a

A B

C

D

E F

G162b

A

B

C
D

E

F

G166a

A

BC

D

E

F
G166b

A

B

C DE

F

G168a

A B

C

D

E

F
G168b

A

B

C
D E

F

G169a

A

B

C

D

E

F

G169b

A

B

C
D

E

F

G170a

A B

C

D

E

F

G170b

A

B

C D
EF

G171a

A

B

C

DE

F

G171b

A
BC

D
E

F

G172a

A B

C

D

E

F

G172b

A

B

C D
E

F

G173a

A B

C

D

E

F

G173b

A

B

C D

E

F

Figure 11. Embeddings of 3-dimensional graphs in 3-space - part 1.
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G558a
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C

D

E

FG

G558b

A

B
C D

E

F

G
G565a

A

B

C

D

E

F G

G565b

A

B

C D
E

F

G
G578a

A

B

C

D

E

FG

G578b

A

B

C D

E

F

G

Figure 12. Embeddings of 3-dimensional graphs in 3-space - part 2.

Since vertex B must be at unit distance from both A and C, there is only one
place to embed it, namely where vertex F is already embedded. So there is no
way to embed G171 in the plane with vertices B and F at distinct points. Thus
dim(G171) = 3.

Of the 43 candidate graphs, 42 have been shown to have dimension 2 or 3. The
only remaining graph is K3,3, which is 4-dimensional. Thus the minimum number
of edges which a 4-dimensional graph can have is 9, and there is only one such
graph, namely K3,3.
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